Skip to main content
Calorimetry Lab Results

In segment F, the students complete the design and engineering task of making hot and cold packs. They draw conclusions about what compounds they can use to create the packs based on their observations and the data they compiled.

In segment F, the students complete the design and engineering task of making hot and cold packs. They draw conclusions about what compounds they can use to create the packs based on their observations and the data they compiled.

Premiere Date: August 15, 2016 | Runtime: 00:04:49

Support Materials


Unit 8F Note Taking Guide & Segment Questions

Science & Engineering Practices

Analyzing and Interpreting Data

Once collected, data must be presented in a form that can reveal any patterns and relationships and that allows results to be communicated to others. Because raw data as such have little meaning, a major practice of scientists is to organize and interpret data through tabulating, graphing, or statistical analysis. Such analysis can bring out the meaning of data—and their relevance—so that they may be used as evidence.
Engineers, too, make decisions based on evidence that a given design will work; they rarely rely on trial and error. Engineers often analyze a design by creating a model or prototype and collecting extensive data on how it performs, including under extreme conditions. Analysis of this kind of data not only informs design decisions and enables the prediction or assessment of performance but also helps define or clarify problems, determine economic feasibility, evaluate alternatives, and investigate failures. (NRC Framework, 2012, p. 61-62)

Engaging in Argument from Evidence

The study of science and engineering should produce a sense of the process of argument necessary for advancing and defending a new idea or an explanation of a phenomenon and the norms for conducting such arguments. In that spirit, students should argue for the explanations they construct, defend their interpretations of the associated data, and advocate for the designs they propose. (NRC Framework, 2012, p. 73)


absolute zero - the temperature at which all molecular motion stops and entropy is zero.

calorimetry - a method of measuring the quantity of heat transferred in a process. 

chemical thermodynamics - the study of energy changes that accompany chemical reactions or physical changes in the state of matter; also known as thermochemistry.

endothermic - describes a process that takes in or absorbs energy from its surroundings. 

enthalpy - a thermodynamic quantity equivalent to the total heat content of a system. 

entropy - the measurement of energy dispersal.

exothermic - describes a process that produces or gives off energy to its surroundings.

first law of thermondynamics - the amount of energy in the universe is a constant. Energy can be transferred from one substance to another or transformed into other forms of energy, but it cannot be created or destroyed.

heat - the transfer of energy from a warmer object to a cooler object; also known as thermal energy. 

joule - the SI unit of measure for energy, abbreviated J. 

second law of thermodynamics - energy always disperses from a more usable form of energy to a less usable form.

specific heat capacity - the heat needed to raise the temperature of one gram of a substance by one degree Celcius.

surroundings - everything around the system, i.e. air, water, packaging, etc... 

system - the chemical reaction or physical process being monitored. 

temperature - a measurement of the average kinetic energy or molecular movement in an object or system. 

thermal conductivity - a measure of the ability of a material to transfer heat. 

third law of thermodynamics - the entropy of a system at absolute zero is zero. 

Georgia Standards of Excellence

SC2Obtain, evaluate, and communicate information about the chemical and physical properties of matter resulting from the ability of atoms to form bonds.

SC2.cConstruct an explanation about the importance of molecular-level structure in the functioning of designed materials. (Clarification statement: Examples could include why electrically conductive materials are often made of metal, flexible but durable materials are made up of long chained molecules, and pharmaceuticals are designed to interact with specific receptors.)

SC2.gDevelop a model to illustrate the release or absorption of energy (endothermic or exothermic) from a chemical reaction system depends upon the changes in total bond energy.

SC3Obtain, evaluate, and communicate information about how the Law of Conservation of Matter is used to determine chemical composition in compounds and chemical reactions.

SC3.bPlan and carry out investigations to determine that a new chemical has formed by identifying indicators of a chemical reaction (specifically precipitate formation, gas evolution, color change, water production, and changes in energy to the system should be investigated).

SC5Obtain, evaluate, and communicate information about the Kinetic Molecular Theory to model atomic and molecular motion in chemical and physical processes.

SC5.aPlan and carry out an investigation to calculate the amount of heat absorbed or released by chemical or physical processes. (Clarification statement: Calculation of the enthalpy, heat change, and Hess’s Law are addressed in this element.)

SPS7Obtain, evaluate, and communicate information to explain transformations and flow of energy within a system.

SPS7.bPlan and carry out investigations to describe how molecular motion relates to thermal energy changes in terms of conduction, convection, and radiation.

SPS7.cAnalyze and interpret specific heat data to justify the selection of a material for a practical application (e.g., insulators and cooking vessels).

SPS7.dAnalyze and interpret data to explain the flow of energy during phase changes using heating/cooling curves.

Request Teacher Toolkit

The Chemistry Matters teacher toolkit provides instructions and answer keys for labs, experiments, and assignments for all 12 units of study. GPB offers the teacher toolkit at no cost to Georgia educators. Complete and submit this form to request the teacher toolkit. You only need to submit this form one time to get materials for all 12 units of study.