Example of Text Complexity, Literary:

The Book Thief by Markus Zusak

Exemplar Text for Grades 9-10 Text Complexity Band (Appendix B CCSS)
Lexile: 730L

Of course, an introduction.

A beginning.

Where are my manners?

I could introduce myself properly, but it’s not really necessary. You will know me well enough and soon enough, depending on a diverse range of variables. It suffices to say that at some point in time, I will be standing over you, as genially as possible. Your soul will be in my arms.

A color will be perched on my shoulder. I will carry you gently away.

At that moment, you will be lying there (I rarely find people standing up). You will be caked in your own body. There might be a discovery: a scream will dribble down the air. The only sound I’ll hear after that will be my own breathing, and the sound of the smell, of my footsteps.

The question is, what color will everything be at that moment when I come for you? What will the sky be saying?

Personally, I like a chocolate-colored sky. Dark, dark chocolate. People say it suits me. I do, however, try to enjoy every color I see—the whole spectrum. A billion or so flavors, none of them quite the same, and a sky to slowly suck on. It takes the edge off the stress. It helps me relax.

A SMALL THEORY

People observe the colors of a day only at its beginnings and ends, but to me it’s quite clear that a day merges through a multitude of shades and intonations, with each passing moment. A single hour can consist of thousands of different colors. Waxy yellows, cloud-spat blues. Murky darknesses. In my line of work, I make it a point to notice them.

As I’ve been alluding to, my one saving grace is distraction. It keeps me sane. It helps me cope, considering the length of time I’ve been
Example of Text Complexity, Informational:

"Thinking about physics while scared to death (on a falling roller coaster)" by Jarrell Walker

THE AMATEUR SCIENTIST

Thinking about physics while scared to death (on a falling roller coaster)

by Jarrell Walker

The ride in an amusement park not only are fun but also demonstrate principles of physics. Among them are rotational dynamics and energy conversion. I have been exploring the ride at Cabbage Lake amusement Park near Cleveland and have found that nearly every ride offers a memorable lesson.

To me the scariest rides at the park are the roller coasters. The Big Dipper is similar to many of the roller coasters that have thrilled passangers for most of this century. The cars are pulled up to the top of the highest hill by a chain. Released from the chain as the front car begins its descent, the unpowered car gains almost no speed and only a small acceleration. As more cars get onto the downward slope, the acceleration increases. It is only the car at the front that matters. The peak of the hill is where the acceleration by gravity and the size of the hill come into play. A steeper descent generates a greater acceleration, but packing the coaster with heavier passangers does not.

When the coaster reaches the bottom of the valley and starts up the next hill, there is an instant when the cars are virtually motionless distributed in the valley. The acceleration is zero. As more cars ascend, the coaster begins to slow, reaching its lowest speed just as it is symmetrically positioned at the top of the hill. A roller coaster functions by means of transfers of energy. When the chain lifts the cars to the top of the final hill, it does work on the cars, endowing them with gravitational potential energy, the energy of a body in a gravitational field with respect to the distance of the body from some reference level such as the ground. As the cars descend into the first valley much of the stored energy is transferred into kinetic energy, the energy of motion.

If the loss of energy to friction and air drag is small, the total of the potential and kinetic energies remains constant throughout the descent and even when the cars reach the bottom. The peak of the hill is where the car gains kinetic energy and speeds at the expense of potential energy. If the first valley is at ground level, the transfer is complete, and for a moment the car carries all its energy in the form of kinetic energy.

Without energy losses the coaster could climb any number of hills as high as the one from which it is released (but no higher). To be sure, friction and air drag do remove energy from the coaster, and its total energy content dwindles. It can no longer climb high hills which is why the last stages of the track consist of only low hills.

The length of a ride on a roller coaster depends on the speed. If the ride is too fast, the launching hill should be high so that the total energy is large. The rest of the track should be low so that most of the energy remains kinetic.

The choice of a seat on a roller coaster makes a difference in the ride. Some people prefer the front seat because the descent from the launching site presents the pleasingly frightening illusion of falling over the edge of a cliff. Others prefer the psychological security of the rear seat.

The choice of a seat also determines the forces felt by the passenger. Consider the first descent. The front car starts down slowly because little of the car's energy is then kinetic. The speed of the car increases as it passes through the exponential function of time, so that the rear car starts down at a much higher speed than the front car did. Although the passenger in the front seat is in the most vulnerable position, the rear car has a stronger acceleration and the car hurtles over the edge.

At the edge force on the passenger is from the change in the direction of his momentum vector. Initially the vector is horizontal, but soon it points toward the valley. The force necessary to effect this change in direction is delivered by the safety bar that keeps the passenger in the car. That force, which points downward and back toward the hill, is part of the thrill of the ride. A passenger in the rear feels the force more than a passenger in the front because the size of the force is proportional to the momentum, which is greater for the passengers in the rear.

The story is different in the valley. Again a force from the coaster is necessary to redirect the passenger's momentum. This time the momentum is initially downward toward the bottom of the valley and then redirected toward the top of the next hill. The front passenger has a large momentum and is subjected