

N	a	n	1	e	
N	a	n	1	е	

Date:

Work each of the following	a problems.	SHOW ALL	WORK.

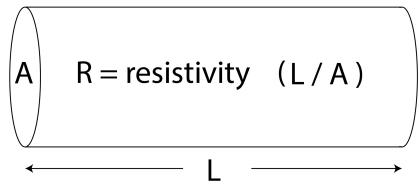
1.	1. How much current is flowing through a wire if 21.5 C of charge passes a point in 6.3 seconds?							
2.	A 210 Ω resistor is connected in a circuit with a 110V battery. What total amount of charge passes through a point in the circuit in 2 minutes?							

- 3. Figure out the amount of time these devices would need to be in operation before 1 million Coulombs of charge passes through them:
 - a. LED night light (I = 0.0041 A)
 - b. Incandescent night light (I = 0.052 A)
 - c. 60 Watt Incandescent light bulb (I = 0.4 A)
 - d. Large kitchen light fixture (I = 2.1 A)

Date:

Work each of the following problems. SHOW ALL WORK.
4. An electric saw at a local hardware store features a motor that supplies 15 A. Find the resistance of the saw when it is plugged into a 110 V outlet.
5. Defibrillator machines are used to deliver an electric shock to the human heart, to resuscitate a heart that has stopped beating. It is estimated that a current as low as 18 mA through the heart is required to resuscitate. Using 95 k Ω as the resistance, determine the output voltage a defibrillator needs.

6. A taser sends about 1100 V through the human body, resulting in an average current of 2.5 mA. From these numbers, estimate the electrical resistance of the human body.



Name:

Date:

Work each of the following problems. SHOW ALL WORK.

7. Related to resistance is a term called resistivity. Resistivity depends on material type, and is a number with units of Ω m. When multiplied by a wire's length divided by its area, resistivity yields the overall resistance of that length of wire:

The wire heating element of an electric toaster is 190 cm long, and has a diameter of 0.05 cm. If the heating element is made of nichrome (which has a resistivity of $1.1 \times 10^{-6} \Omega m$), what is the overall resistance of the wire?

8. You are analyzing an electrical circuit around a battery that outputs 9 V. The circuit is designed to carry a maximum current of 2 A - anything above that and a fuse in the circuit will break, to keep the circuit from being overloaded. Currently a 3.2 Ω appliance is the only resistor in the circuit. Will the fuse blow out? If so, what new resistor would be needed so the 2 A limit is not exceeded?

N	a	n	1	e	
N	a	n	1	е	

Date:

V	Vork	eacl	h of	the	fol	lowing	prob	lems.	SH	OW	ALL	WOR	ŀΚ.

9. A lamp draws a current of 0.34 A, from a power outlet that supplies 120 V. What is the resistance of the lamp?