

Unit 4H Conservation of Energy Note-Taking Guide

N	а	n	1	Δ	ı
- 14	u	ш	ш	u	1

Date:

Main Ideas, Key Points, Questions:

After watching the video segment, write down key points, main ideas, and big questions.

3 ()bjective('s)
	mjecuve(ગ

- Understand how conservation of energy is applied to physical situations, both qualitatively and quantitatively.
- Recognize situations in which energy is either conserved or not conserved.

N	lo:	toc
IV.	U	tes

During the video segment, use words, phrases, or drawings to take notes.

Summary:

After watching the video segment, write at least three sentences explaining what you learned. You may ask yourself: "If I was going to explain this to someone else, what would I say?"

Unit 4H Conservation of Energy Questions to Consider

N	2	m	10	
IV	а		ıc	, ,

Date:

A	Inswer the following.
1.	Define the law of conservation of energy in your own words.
2.	What form of energy does an object possess based on its height relative to a reference point?
3.	What form of energy does an object possess due to its movement?
4.	Provide examples of non-conservative forces.
5.	When non-conservative forces are present, does all of the energy in a system remain in a usable form? Explain.
6.	What type of force are the force of gravity and the force exerted by a spring? How does this type of force influence the energy in a system?
7.	As an object falls to the ground, what happens to its energy? Ignore air resistance in this scenario.
8.	If air resistance acts on a falling object, will all of its potential energy be converted into kinetic energy?