

Unit 3C

Name:

Newton's Second Law Part 1

gpb.org/physics-motion

Note-Taking Guide and Questions to Consider Date:

After watching the video segment, write down key points, main ideas, and big questions.

Objective(s):

- Understand the difference between field forces and contact forces.
- Use Newton's second law to calculate an object's acceleration when it experiences a net force.

м	otes	ł
IW	011:45	ì
ш		Ł

During the video segment, use words, phrases, or drawings to take notes.

Julilliai y.	>	Summary:	
--------------	-------------	-----------------	--

After watching the video segment, write at least three sentences explaining what you learned. You may ask yourself: "If I was going to explain this to someone else, what would I say?"

Unit 3C

Newton's Second Law Part 1

Note-Taking Guide and Questions to Consider

Date:

Name:

Answer the following.

1.	What kind of force is the force of gravity? Do objects have to be touching in order for the force of gravity to be exerted?
2.	Write the equation for Newton's law of universal gravitation:
	$F_{g} = \underline{\hspace{1cm}}$
3.	As the distance between two objects increases, how does the force of gravity between them decrease?
4.	What is the acceleration due to gravity on earth?
5.	Does an object's mass or weight change when it goes to another planet? Explain why.
6.	Force is measured in what unit? What is this unit equal to in other units?
7.	Define a contact force in your own words.

Unit 3C

Name:

Newton's Second Law Part 1

Note-Taking Guide and Questions to Consider Date:

Answer	the fo	llow	ing.

8.	What are the five types of contact forces?
9.	Write the equation for Newton's second law:
	$F_{net} = \underline{\hspace{1cm}}$
10	. How are the direction of the net force on an object and the direction of the object's acceleration related?
11	. What is the equation for the force of gravity on an object?
12	$F_{\rm g} = \underline{\hspace{1cm}}$ If two forces act in opposite directions on an object, how do you find the net force acting on the object?