\qquad

1. Fill in the table:

symbol unit		(use J, C, s)	
current			
power			
voltage			
work			XXXXXXXXXXX
resistance			

2. What is the resistance of an electric frying pan that draws 14a when connected to a 110 v circuit?
b. What is the power of the frying pan?
3. A 1500 w appliance runs for 6.2 h . What is its cost at 9.5 cents $/ \mathrm{kw} \mathrm{hr}$?
4. Give 3 examples of electric charge pumps. What do they do to charges? What happens when the charges go through loads in the circuit and return to the pump?
5. Draw symbols for these parts of a circuit: open switch resistor load fuse battery (label + and - poles)

6. R_{3}, R_{4}, and R_{5} are connected in \qquad with each other and in
\qquad with R_{2}.
7. Calculate the resistance from: B to C (outside branch) B to C (inside branch)

B to C (both branches) \qquad

The resistance from A to $D=$ \qquad (This is the \qquad R of the circuit.)
3. From R_{T} and V_{T}, calculate total current in the circuit: $I_{T}=$ \qquad
On the diagram show where you would put an ammeter to measure total current.
Which two resistors have current readings equal to I_{T} ? \qquad and \qquad On the diagram, label these currents.
4. Use Ohm's Law to calculate: $\mathrm{V}_{1}=$ \qquad and $V_{6}=$ \qquad
Because the charge pump furnishes a $V_{T}=$ \qquad and R_{1} and R_{6} use up
\qquad v together, the voltage drop from point B to $C=$ \qquad .
$V_{2}=$ \qquad and the V of the outside branch = \qquad since the two branches are connected in \qquad and voltage (adds up, is the same)
in both branches. Since R_{3}, R_{4}, and R_{5} are connected in \qquad their voltage drops must add up to \qquad v.
5. From V_{2} and R_{2}, calculate: $I_{2}=$ \qquad Then how much current runs through the outside branch? \qquad How do you know? \qquad Since all the resistors in this branch are in series, the current running through them (adds up, stays the same). Label each with their current.
6. Calculate: $\mathrm{V}_{3}=$ \qquad $V_{4}=$ \qquad $V_{5}=$ \qquad
$V_{3}+V_{4}+V_{5}=$ \qquad How does this compare to V_{2} ? \qquad

