Unit 1 Review Sheet

Name		

1. The three basic quantities used in mechanics (the study of _____) are

_____, and _____, Their units in the MKS system are _____, and _____, and _____, and

- The units in #1 are called ______ units. They can be combined through calculations into ______ units. The unit for velocity in the MKS system is the m/s. It is an example of a ______ unit.
- 3. What is the difference between weight and mass?
- 4. Fill in the chart, keeping the same number of significant digits:

Decimal Notation	Scientific Notation	# of Sig. Digits
3,600		
	2.10 × 10 ⁻⁴	
0.0002040		
	6.003×10^{1}	
	7.0×10^{6}	

- 5. Round the following to 3 significant digits:
- a) 4,565,001 = _____ b) 2.8975 X 10⁻³ = ____ c) 0.002101 = _____
- 6. Calculate and round to the correct number of digits:

- 9. _____ refers to the closeness of a measurement to an accepted value. _____ refers to the reproducibility of a measurement.
- 10. A scientist fed identical plants with different masses of fertilizer and measured the growth of the plants each week. From the data, he constructed a graph. Indicate 5 errors in the graph.

		-	F	ŀ		\square	+	-	\square	_		_	T			7
Mass of Fertilizer (g)	Plant Growth (cm)	ser .	• + 5 +							+						+
0.0	2.2	1.4	4 ÷	+	F	Ħ	1	-	Ħ	_	Ħ	1		Ł		+
2.0	9.0	Ř.	3 4	+	-		+	1	Ħ	+	И	4	+	F		+
4.0	14.2	8.	2 \$		+	H	+			4		1	+	\downarrow		+
5.0	17.0	lass	, -	+	╞		\downarrow	Ł		-		1	+	t		+
6.0	16.0	2	ļ	1		K	1		H				1	\vdash	H	
			0		1	- 4				1	0	17	2	5	1	,

Use the graph above (even though it has errors) to find the plant growth expected from the use of 3.0g of fertilizer.

- 11. What is the difference between interpolation and extrapolation?
- 12. When graphing data, the ______ variable is placed on the x-axis and the ______ variable on the y-axis.
- 13. How do the graphs of direct and inverse proportions differ? How is a proportion changed into a mathematical equation?
- 14. A formula used often in physics is K.E. = ½ mv². If kinetic energy (K.E.) is held constant, mass (m) is ______ proportional to velocity squared (v²). If velocity is held constant, kinetic energy is ______ proportional to mass.
- 15. Study all your notes, worksheets, quizzes, and labs!