6.	burns only when temperatures are above 600 °C, but inside the body sugar burns (is oxidized) at normal body temperature, which is 37 °C. How is this			
	possible?			
7.	Double arrows in an equation mean that the equation is			
	Brackets around a formula represent			
8.	In a state of chemical equilibrium, the forward and reverse reactions are			
	proceeding at the same			
9.	Principle states that when a stress is applied to a system in			
	, the system reacts to the stress.			
10	.Using t	he reaction below, predict the	direction of t	ne equilibrium displacement
	(left or right) when the following stresses are applied:			
$2 SO_{2}(g) + O_{2}(g) \rightleftharpoons 2 SO_{3}(g) + 45 kJ$) + 45 kJ
	a.	increasing temperature _		
	b.	decreasing pressure _		
	c.	adding SO₂(g)		
	d.	removing O₂(g)		
	Will the $[SO_3]$ increase or decrease in the above situations?			
	α.	b.		
	c.	d.		