
Lab: Torque

Name_____

Label the direction of each force, and draw and label all lever arms:

Pivot Point is at the _____ cm mark.

hanging object	F⊥ (n)	position (cm)	r (cm)	T (n⋅cm)	cw or ccw
1	2.0				
2	1.0				
3	0.5				

21 _{cw}	$\Sigma T_{cw} =$		ΣT_{c}	w =
------------------	-------------------	--	----------------	-----

CONCLUSIONS:

Within bounds of experimental error, how do the total clockwise and counterclockwise torques compare?

The meter stick is in a state of ______.

When an object is in this state, does it have to be at rest? _____ Explain.

Why was the weight of the meter stick not considered when you were calculating torques?