STE(A)M Truck 6 Day Project

Name of Project: Rube Goldberg Contraption

<table>
<thead>
<tr>
<th>Theme</th>
<th>Repurpose and Reuse, Physical Science, Force and Motion</th>
</tr>
</thead>
</table>
| **Essential Question(s)/Brief Description** | How do we connect prior knowledge about simple machines to create a Rube Goldberg machine?
How do simple machines work together to complete one task?
What household items can we repurpose to model simple machines and create a Rube Goldberg machine? |
| **STEAM Focus:** Science, Technology Engineering, Arts and/or Math | Science, Technology, Engineering, and Math |
| **Badge(s) Earned** | *Modifying and Remixing*
The learner experiments by repurposing materials, modifying existing products, or combining components in novel and surprising ways.
1A: REPURPOSE: The learner demonstrates openness to the use of various materials by, within the planning process, considering uses for various materials that are out of the realm of their normal use.
1B: MODIFY: The learner creatively modifies an existing material or object to better suit it to a particular use.
1C: COMBINE: The learner combines various unlikely materials to achieve an intended result that is different from each material’s intended purpose. |
| **Program Fit:** Directed, guided or independent stages. Alternatively is this a beginning/middle/end phase challenge? | This project will have a variety of stages in which the students will work independently, in pairs or groups, or under adult direction. |
| Standard(s) | S.5.CS.4. Students will use ideas of system, model, change, and scale in exploring scientific and technological matters.
| | a) Observe and describe how parts influence one another in things with many parts.
| | b) Use geometric figures, number sequences, graphs, diagrams, sketches, number lines, maps, and stories to represent corresponding features of objects, events, and processes in the real world.
| | c) Identify ways in which the representations do not match their original counterparts.
| | S.4.P.3. Students will demonstrate the relationship between the application of a force and the resulting change in position and motion on an object.
| | a) Identify simple machines and explain their uses (lever, pulley, wedge, inclined plane, screw, wheel and axle).
| | b) Using different size objects, observe how force affects speed and motion.
| | c) Explain what happens to the speed or direction of an object when a greater force than the initial one is applied.
| | d) Demonstrate the effect of gravitational force on the motion of an object.
| Connections to (a) prior learning, (b) everyday life, (c) other content areas. | a) This project will reference what the students have learned through previous science units, particularly the lessons on physics and simple machines.
| | b) This project could connect to students’ prior experiences with the annual Atlanta Fair and/or Six Flags over Georgia. Students may be familiar with rides at these amusement parks to inform their understanding of the path the marble travels in the Rube Goldberg machine.
| Assessment | How will students demonstrate that they have mastered the objective(s) and can answer the Essential Question(s) for this lesson?
| | Throughout the build process students will take responsibility for following written and verbal instructions. There will multiple opportunities for students to give and receive feedback to each other as well as receive feedback from teacher(s). By creating a video describing the Rube Goldberg machine and verbally presenting it to an audience, students will be able to demonstrate their understanding of the design process and scientific concepts of this build.
<table>
<thead>
<tr>
<th>Will you need the STEAM Truck?</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Will you need the STEAM Trailer?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>List all tools and equipment needed.</td>
<td></td>
<td></td>
<td>Scissors, tape, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety plan and mitigation.</td>
<td></td>
<td></td>
<td>Maker mentor and students will review safety mantra for tool use.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials/Resources/Technology</td>
<td></td>
<td></td>
<td>aluminum foil; plastic containers; cardboard; water bottles, toilet paper or paper towel tubes for chutes; cereal boxes to use like dominoes; pop cans, soup cans, or batteries to roll dominoes; funnels; marbles; golf balls; toy cars; string; buckets; cups or bowls</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning Sequence

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
<th>Day 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening Session
(Activating Strategy)
This is your attention getter to engage students and provide an overview of the concept.</td>
<td>Students will view a video to learn about Rube Goldberg machines.</td>
<td>Students will re-watch the video and conduct additional research to gather ideas to improve their contraptions.</td>
<td>Students will view a quick tutorial about creating videos in iMovie.</td>
<td>Each group will demo their Rube Goldberg component and receive feedback from class about what works or what could be fixed.</td>
<td>As a class, discuss the class sketch created yesterday so everyone understands what the final machine should look like and how it should function.</td>
</tr>
<tr>
<td>Work Session
(Guided Teaching of New Content)
Explore Tinker Design Build</td>
<td>Explore
Ask students what they know about Rube Goldberg machines. Brainstorm ideas for how you might use everyday items to build a Rube Goldberg Machine.</td>
<td>Review six simple machines:
Lever
Wheel & Axle
Pulley
Inclined Plane
Wedge
Screw</td>
<td>Explore
Revisit the Design Thinking techniques learned in the wallet exercise. Then, students will define the problem they want to solve and how they want to solve it. Students will share the simple and compound machine sketches they created during the closing session of the previous day.</td>
<td>Explore
Students will break into yesterday’s groups and compare the sketches they made in their journals during the closing. As a group they will decide which additional component to add to their Rube Goldberg machine.</td>
<td>Tinker
Students will collectively figure out how to combine all four groups’ components to create one class machine.</td>
</tr>
</tbody>
</table>
Work Session (cont.)

Tinker
Assign students the task to model two working simple machines with the available household items. Students should explain which machine is represented and how it simplifies work and conserves energy.

Design
On individual dry erase boards, students will work in pairs to sketch out, at most, four components of a Rube Goldberg machine.

Build
Students will reconstruct the simple machines they constructed individually yesterday and figure out a way to connect their machine with a partner’s. Student pairs will find another student pair to join to make a four-component chain reaction.

Tinker
After observing successes/failures of combining the simple machines, groups will brainstorm how to make the reaction smoother. Each student will sketch the group diagram in their journal and add one additional component.

Build
Students will reconstruct the four steps of the Rube Goldberg machine, adding on the next component.

Tinker
Students will make any additional changes or modifications. Students will view other groups’ machines to decide who they would want to join with to create one class model.

Design
Students will revisit the class diagram illustrating each component and what should happen at each stage of the chain reaction. Students will adjust the drawing to reflect any changes that occurred during today’s build.

Build
Students will film a 3-5 minute video to detail the construction and success of their Rube Goldberg Machine.
Closing Session
Teacher seeks evidence of student understanding of this lesson’s content.

(5 min) In their journals, students will draw and label each simple machine. Then, students will draw 2-3 compound machines that could be incorporated into their Rube Goldberg machine. These sketches will be shared with the group the following day.

(5 min) Students will reflect about today’s build in their journals. Have them consider what went well, what didn’t, and what still needs to be done.

(5 min) Students will reflect about today’s build in their journals. Have them consider what went well, what didn’t, and what still needs to be done.

(5 min) Students will brainstorm creative ways to advertise their Rube Goldberg machine. In their journals, students will be write a short infomercial about their “wild and wacky Rube Goldberg machine.”

Students will showcase their video to a set of classmates, a different class or other people in the building. They will introduce video, explain the main concept of the build, as well as any “fabulous failures” and “significant successes” they experienced. After showing the video, students will answer questions from the audience.

Differentiation

<table>
<thead>
<tr>
<th>Learning Styles</th>
<th>Visual: Students will be given a general written outline this project’s steps. There are also written tasks for various parts of the lesson. Teacher demonstrations will also support visual learners.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Auditory: Teacher demonstrations, videos, and peer discussions will support auditory learners.</td>
</tr>
<tr>
<td></td>
<td>Kinesthetic: By nature, the project caters to kinesthetic learners. Students will engage in hands-on activities throughout the lesson’s tinker, design, and build processes.</td>
</tr>
</tbody>
</table>