Position "B" on the diagram is called the	x
position. When the pendulum bob moves from "A" to "B", it	
(accelerates, decelerates), and when it goes from "B" to "C", it	
(accelerates, decelerates). This kind of motion is called simple	
motion. When the bob moves from "A" to	AÓ DOC
"C" and back to "A" again, it has made one complete cycle or	© B

The maximum distance the bob moves from the equilibrium position is its ______. The time it takes to make one complete vibration is called the ______. The ______ is the number of vibrations it makes in one second. Since frequency (f) uses the unit, "vib/s", and period (T) uses "s/vib", write an equation showing how "f" and "T" are related: ______

Table I:

bob mass (washers)	avg. frequency(vib/min)

* 1	
2	
3	

<u>Table II</u> amplitude(cm)	avg. frequency(vib/min)
* 10	
5	

<u>Table III</u>

length(cm)	avg. frequency(vib/min)
* 40	
25	
15	

Conclusions:

- 1. The only factor that affects a pendulum's frequency is _____
- 2. When the length of a pendulum is increased, the frequency (increases, decreases).
- 3. How would you adjust the pendulum of a grandfather clock if it were running too slow?
- 4. On the back of this sheet, put your pencil in one spot at the top of the page and move it side-to-side several times. Continue this motion while you move the pencil down the page. Use what you learned about pendulums to:

a. measure the distance the pencil moved as it made 1 complete vibration.

(Use brackets to label this distance on your drawing.)

b. measure the amplitude of the vibration. _____ (Label it on the drawing.)