Note	Takina	Guide:	Episode	1502
14016	i aning	Culue.	Chisoae	1002

Name_____

natural transmutation - Uranium spontaneously decays.

$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$$

<u>artificial transmutation</u> - bombardment of a stable isotope to force it to decay.

$$^{14}_{7}N + ^{4}_{2}He \rightarrow ^{1}_{1}p +$$
nuclear "bullet"

When the bullets are ____ charged, they are _____ by the nucleus they are bombarding. To overcome the repulsions, they must be _____ to very high speeds by _____ accelerators.

nuclear fission - Heavy nuclei are bombarded with neutrons and split.

$${}_{0}^{1}n + {}_{92}^{235}U \rightarrow {}_{56}^{142}Ba + {}_{36}^{91}Kr + 3({}_{0}^{1}n) + E$$

Mass of particles produced is slightly _____ than the mass of the reactants.

This mass is converted into _____. (E =)

critical mass: _____ mass of _____ material required

nuclear reactors: control fission _____ reactions to produce energy dangers:

nuclear fusion - combination of _____ nuclei into ____ with release of

$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n + E$$

Mass of particles produced is much _____ than the mass of the _____.

This ____ is converted into energy. (E =)

On back, list advantages of and problems with using fusion as an energy source.

CHEMISTRY: A Study of Matter