electrochemistry - the study of ______-related applications of ______

oxidation numbers -

- numbers assigned to the ______ in a chemical ______
 that give the ______ charge of the ______.
- In ionic compounds oxidation # = _____
- In molecular compounds oxidation # is based on _____
- Oxidation #'s are written with the _____ first and then the _____.

Rules For Assigning Oxidation Numbers:

situation	oxidation #
elements in a compound:	

Example:

 $2 \text{ NaCl} + MgO \rightarrow Na_2O + MgCl_2$

CuSO₄

 $Mg(NO_3)_2$

	reu	iction (rea	ction) is any reaction
in which atoms or ic				
Is this a redox read	ction? 2N	la + Cl ₂	\rightarrow 2 Na(
				in
number, it has unde 1 o				by
			so Na was _	
When an or	in a react	ion has a		in
number, it has unde				by
1 o The oxidation # of			so Cl was	
	IE	O says GEF)	
		. \	>	
electrons				electrons
	nd squares around	d those that c	are reduced	around the reactants
that are oxidized a	nd squares around 3 Types o	d those that c of Redox Rea	are reduced	
Chemistry Assignment that are oxidized a #1 Electron excha	nd squares around 3 Types o	d those that c of Redox Rea	are reduced	
that are oxidized a #1 Electron excha #2 Electron excha	nd squares around 3 Types of nge happens unge is forced, usi	d those that c	are reduced actions: _, as the ch	emicals come in
that are oxidized a #1 Electron excha #2 Electron excha 	nd squares around 3 Types of nge happens 	d those that c	are reduced actions: _, as the ch	emicals come in This is called
 that are oxidized a #1 Electron excha #2 Electron excha #3 The chemicals occurs only wh 	nd squares around 3 Types of nge happens ange is forced, usi are are	d those that c of Redox Rea ing so	are reduced actions: _, as the ch	emicals come in This is called
 #1 Electron excha #2 Electron excha #3 The chemicals occurs only wh 	nd squares around 3 Types of nge happens ange is forced, usi are are	d those that c of Redox Rea ing so	are reduced actions: _, as the ch	emicals come in This is called
 that are oxidized a #1 Electron excha #2 Electron excha #3 The chemicals occurs only wh 	nd squares around 3 Types of nge happens ange is forced, usi are are	d those that c of Redox Rea 	are reduced actions: _, as the ch that	emicals come in This is called exchange , producing
 that are oxidized a #1 Electron excha #2 Electron excha #3 The chemicals occurs only wh 	nd squares around 3 Types of nge happens ange is forced, usi are are	d those that c of Redox Rea 	are reduced actions: _, as the ch that	emicals come in This is called exchange , producing