| Lab: Le Chatelier's Principle—Datasheet | | | Name | |---|----------------------------------|--|---| | Table | I: | | | | | Ion | Color | | | | K⁺ | | Use the chart on the left | | | Cl ⁻ | | to determine the colors of | | | SCN ⁻ | | reactants and products.
Write the color in the | | | Fe ³⁺ | | blanks above the equation. | | | Fe(SCN) ²⁺ | | , | | Table | II:
colors: ——— | | | | | | $Fe^{3+} + SCN^{-} \Longrightarrow Fe(SC)$ | [:] N) ²⁺ | | | | Cala diama | Direction of Shift | | ć | Chemical Added | Color Change | Direction of Shift | | 1. | Chemical Added FeCl ₃ | Color Change | Direction of Shift | | | | Color Change | Direction of Shift | According to LeChatelier's Principle, when a _______ is applied to a system in equilibrium, the system will readjust to ______ the stress, restoring a state of equilibrium. For each procedure in Table II, identify the stress (ex.- addition of a reactant, removal of a product, etc.) and the reason for the shift in equilibrium (ex.- shift to right uses up reactants): | 5tress 1 | Reason for Shift | |-----------------|--| | 2 | Hint: NaOH reacts with Fe³+ to form solid Fe(OH)3. | | 3 | |