Lab: Introduction to Equilibrium—Datasheet

Name

DATA:	0	→			0	→
Part I:			•	Part II:		
time	volume of	volume of		time	volume of	volume of
(sec)	reactants	products		(sec)	reactants	products
	(mL)	(mL)			(mL)	(mL)
1				1		
2				2		
3				3		
4				4		
5				5		
6				6		
7				7		
8				8		
9				9		
10				10		
11				11		
12				12		

CONCLUSIONS:

Part I:

- In this simulation, the blue solution represents ______ and the red represents ______. The solution that is drawn into the straw represents the particles that are making ______ collisions. Since reactants form products, and products can form reactants, the reaction is ______. The rates of the reactions can be measured in the mL of reactants or products formed per _____.
- 2. During the first few seconds, the volume of the blue reactants (increases, decreases) and the volume of the red products (increases, decreases). This means that the forward reaction is (faster, slower) than the backward reaction. But as time goes on, the amount of reactant solution that can be drawn into the straw (increases, decreases). This means that the reactants are making (more, fewer) effective collisions, so the forward reaction (speeds up, slows down). At the same time, as the volume of the products increases, the amount of products that can be drawn into the straw (representing

_____ collisions) (increases, decreases) and the reverse reaction (speeds up, slows down).

3. During the last few seconds, what happens to the volumes of reactants and products?

Describe the colors of the solutions: _____

The rates of the forward and reverse reactions are,	and
the concentrations of reactants and products (change, remain constant).	The
system is in a state of	

Part II:

- In Part I, when equilibrium was established, the volumes of reactants and products were equal. But in real reactions, this is not usually the case. So in Part II, you used a skinny straw for the backward reaction to represent fewer ______ collisions between products to form ______.
- 2. During the last few seconds, what happens to the volumes of reactants and products?

Describe the colors of the solutions:

At the end, the rates of the forward and reverse reactions are ______, and the concentrations of reactants and products (change, remain constant). The system is in a state of ______, with products (more, less) abundant than reactants.

What would have happened if you and your partner had swapped straws for Part II?

 In equilibrium, do the concentrations of reactants and products have to be equal? _____ What has to be equal? _____