

Equations List

 $v_i = v_i + at$ v = velocitya = acceleration $d = \frac{1}{2}(v_{i} + v_{f})t$ t = time $d = v_1 t + \frac{1}{2} a t^2$ d or x = displacement F_{net} = net force $v_{1}^{2} = v_{1}^{2} + 2 ad$ m = mass or order number $v = \frac{d}{t}$ F_{G} = force due to gravity $F_{mt} = ma$ G = gravitational constant r = radius $F_{G} = \frac{Gm_{1}m_{2}}{r^{2}} = mg$ g = acceleration due to gravity $F_s \leq \mu_s N$ F_s = spring force or static force μ_s = coefficient of static friction $F_{\mu} = \mu_{\mu} N$ μ_{k} = coefficient of kinetic friction $a_c = \frac{V_T^2}{r}$ a_c = centripetal acceleration $v_{\tau} = \frac{2\pi r}{T}$ v_{τ} = tangential velocity T = period $F_s = -kx$ k = spring constant or Coulomb's constant p = mvp = momentum I = impulse $I = F\Delta t$ F = force $KE = \frac{1}{2}mv^2$ KE = kinetic energy $PE_{g} = \frac{Gm_{1}m_{2}}{r} = mgh$ PE₆ = gravitational potential energy h = heightW = FdW = work $P = \frac{W}{t} = Fv$ P = powerPE_s = spring potential energy $PE_s = \frac{1}{2}kx^2$ $F_{_{\rm F}}$ = electrostatic force $F_{E} = \frac{kq_{1}q_{2}}{r^{2}}$ q = chargeE = electric field $F_{E} = qE$ PE_{F} = electric potential energy $PE_{E} = \frac{kq_{1}q_{2}}{r} = qV$ V = electric potential

equations continued on next page

$V = \frac{kq_1}{kq_1}$	I = current
r	R = resistance
V = IR	ρ = resistivity
$I = \frac{q}{t}$	ℓ = length of wire or length of pendulum
	A = cross sectional area
P = IV	F _B = magnetic force
$R = \frac{\rho \ell}{\Lambda}$	B = magnetic field
$F = \alpha v B$	$T_p = period of a pendulum$
$r_B = QVD$	f = frequency or focal length
$F_{\scriptscriptstyle B} = B I \ell$	λ = wavelength
$\tau = 2\pi \sqrt{\ell}$	n = index of refraction
$r_p = 2\pi \sqrt{g}$	c = speed of light
$T = \frac{1}{f}$	Θ_{c} = critical angle
$f = \frac{1}{T}$	d _i = image distance
$y - \lambda f$	d_{o} = object distance
v – NJ	M = magnification
$n = \frac{c}{v}$	h _i = image height
$n_s \sin \Theta_s = n_s \sin \Theta_s$	h _o = object height
$n_1 = n_2$	R = radius of curvature
$SIIIO_c = \overline{n_1}$	y _{min} = distance from central peak to single-slit minima
$\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}$	y _{max} = distance from central peak to double-slit maxima
$M = \frac{h_i}{h_i} = \frac{d_i}{d_i}$	L = distance from slit to screen
$h_{\circ} = d_{\circ}$	a = width of a single slit
$f = \frac{n}{2}$	b = distance between double slits
$v \approx \frac{L\lambda m}{L\lambda m}$	E = energy
$y_{min} \sim a$	Δ m = mass defect
$y_{max} \approx \frac{LXIII}{b}$	HLs = half-lives
$E = \Delta mc^2$	m _{remaining} = radioactive mass remaining
$m - m (1/)^{\text{HLs}}$	m _{initial} = initial radioactive mass
<pre>remaining = III initial (/ 2) </pre>	t _{total} = total time
$\#HLs = \frac{t_{total}}{t_{half-life}}$	t _{half-life} = time for one half-life