1. There are four types of orbitals:

s: shaped like a _____

An E level can contain only _____ s orbital, making up the "s sublevel".

p: shaped like _____

An E level can contain _____ p orbitals, making up the "p sublevel".

d: shaped like double dumbbells

An E level can contain _____ d orbitals, making up the "d sublevel".

 \mathbf{f} : too complex to draw or describe

An E level can contain _____ f orbitals, making up the "f sublevel".

2. Each orbital can hold a maximum of _____ electrons. Since both electrons have a ____ charge, they ____. What keeps them from flying apart?

Each electron _____ on its axis. One spins ____ and the other spins _____. When charged particles spin, they act like tiny magnets. Since the two electrons spin in _____ directions, one acts like the north pole of a magnet and the other acts like the south pole. This makes the electrons

3. Since each orbital can hold _____ electrons:

The "s sublevel" can hold _____ electrons.

The "p sublevel" can hold _____ electrons.

The "d sublevel" can hold _____ electrons.

The "f sublevel" can hold _____ electrons.

We use this notation to describe an electron:

main _____ level $\rightarrow 3p^5$ # of e- in _____

How are electrons distributed within a sublevel?

According to Hund's Rule, each _____ within a sublevel is half-filled before any is _____.

We	draw orbital diagrams to show the distribution of electrons in a sublevel.
Circ	es are used to represent the individual are used to
	esent electrons in the orbital. The first electron in an orbital is represente
-	\uparrow and the second by a \downarrow .
′	,
A se	t of four numbers is assigned to each to
	ribe its energy and location within the atom. The quantum numbers use the
	pols,, and
٠,	,,,
	is the principle quantum number and represents the level of
	electron.
	represents the sublevel of the electron, which depends on the type of
	•
Daul	's Exclusion Principle states that within an atom, no two electrons can have
	·
	same set of If two electrons have the an, I, and m numbers, they are in the same level, the same
	, and the same They must then have
	spins! So, the s quantum numbers must be different.
_	
	tice: Write electron distributions and do the orbital notation for the
foll	wing:
1.	P:
2.	Ca:
Only	do the electron distributions for the following:
•	as the electron distributions for the following
1.	Co:
2.	Eu:
۵.	Cu·
2	Te
3.	Tc: