Name ____

Review Sheet: Unit 3

8.

Atoms are _____ because the number of ____ charged

protons equals the number of _____ charged electrons.

9.	are atoms of an element that have different numbers of				
	neutrons, and consequently, different atomic				
10.	The of an atom is the sum of all the nucleons of an				
	atom.				
11.	Rutherford's planetary model of the atom faced a major problem. Classical				
	physics predicted that the electron, as it circled the nucleus, would				
	energy so eventually the atom would collapse!				
12.	Bohr placed e in levels, assuming that the electron won't lose				
	energy as long as it stays in the allowed level.				
13.	Bohr suggested that electrons can a quantum or of				
	energy, and then jump to a energy level. This is called the				
	state. This is an unstable state, and the atom soon gives				
	off the same amount of energy absorbed. Some of this energy is in the				
	form of light.				
14.	The science of studying visible light through the use of a spectroscope is				
	called The lines identify an element and				
	are called the element's spectrum.				
15.	The modern view of light is that it has a nature, behaving as				
	both a and a stream of It simply depends on				
	the experiment!				
16.	Four are used to describe the location of an				
16.	electron in an atom. They are,, and The				
	principal quantum number,, represents the main level of				
	the electron. The maximum number of electrons in this level is found using				
	the formula: The second quantum number,, describes the				
	shape.				
17.	In the electron distribution $1s^2$, the "1" represents the				
	level, the "s" represents the, and the "2"				
	represents the number of in the				
18.	Rule states that orbitals of equal energy are each occupied by				
	electron before any orbital is occupied by a				
	electron.				
19.	The Exclusion Principle states that no two electrons in the				
	atom can have the set of four				

II. Charts and Problems: Show all work if applicable.

1. Complete the following table:

Hyphen Notation	Nuclear Symbol	Atomic Number	Mass Number	# of Protons	# of Electrons	# of Neutrons
Carbon - 12		6				
	⁴⁰ ₁₉ K					
		5				6

2. The relative abundance of the isotopes of oxygen are:
Oxygen-16: 99.760% Oxygen-17: 0.037% Oxygen-18: 0.204%
Calculate the average atomic mass of oxygen:

3. In a bright-line spectrum, the wavelength of a particular line is 6.0×10^{-7} m. What is the frequency of this color of light?

4. The maximum number of electrons in a main energy level is calculated using the formula ______. Therefore, the maximum number of electrons in the 5^{th} main energy level is:

5. How many sublevels are present in the 4th main energy level?_____ What are they?____

6. The maximum number of electrons that can occupy an orbital is _____, if they have _______.

7. Do the electron distribution and the orbital notation for: Li:

0: