gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.

1. Using the right-hand rule, in which direction will the magnetic force act on a positively charged particle that is moving to the left and experiencing a magnetic field straight ahead?
2. Using the right-hand rule, in which direction will the magnetic force act on a negatively charged particle that is moving to the left and experiencing a magnetic field straight down?
3. Two charged particles, each having the same magnitude of charge but with opposite signs, enter a magnetic field that is perpendicular to their direction of motion. How will the motion of the two particles differ when they enter the magnetic field?
4. An electron that is moving to the right experiences a magnetic field of 2.5 T directed upward. If the force on the electron is $2.4 \times 10^{-12} \mathrm{~N}$, what is the speed of the electron?
5. A proton is moving north at $7.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$, and encounters a uniform magnetic field of 4.5 T directed east. What are the magnitude and direction of the force that act on the proton?

Name: Date:

Work each of the following problems. SHOW ALL WORK.
6. What is the magnitude of charge on a particle that is moving at $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and experiences a magnetic force of $1.2 \times 10^{-10} \mathrm{~N}$ when it encounters a magnetic field of 3.0 T ?
7. What are the direction and magnitude of a magnetic field that act upon a proton moving to the left at $4.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ and experiences a force of $1.4 \times 10^{-10} \mathrm{~N}$ downward?
8. An electron moves to the west at $1.2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ and experiences a magnetic force of $6.0 \times 10^{-13} \mathrm{~N}$ upward. What is the magnitude and direction of the magnetic field acting on the electron?

