\qquad
Complete each of the following showing all work and circling your final answer on all problems.

1. To change a temperature expressed in degrees Celsius to a temperature on the Kelvin scale, what must be done to the Celsius temperature?

Why must we use the Kelvin scale in gas law problems?
2. The volume of a sample of gas is 2.00 L when the temperature is $11.0^{\circ} \mathrm{C}$. While the pressure remains constant, the temperature is changed to a new value, which causes the volume to become 3.00 L . What was the temperature changed to?

This is an example of \qquad 's Law.
3. The volume occupied by a sample of gas is 480 mL when the pressure is 115 kPa . What pressure must be applied to the gas to make its volume become 650 mL ?

This is an example of \qquad 's Law.
4. The volume occupied by a sample of gas is 240.0 mL when the pressure is 1.20 atm. What volume, at constant temperature, will the gas occupy when the pressure is decreased to 0.860 atm ?
5. The volume of a sample of gas is 25.0 mL when the temperature is 270 K . If the temperature is changed to $30.0^{\circ} \mathrm{C}$, what will be the new volume occupied by the gas assuming that the pressure remains constant?
6. When the volume of a sample of gas is divided by the temperature of the gas, the result is $1.33 \mathrm{~mL} / \mathrm{K}$. The temperature of the gas is changed to a new value, which happens to be 411 K while the pressure is kept constant. What volume does the sample of gas occupy at 411 K ?
7. When the pressure exerted by a sample of gas is multiplied by the volume occupied by the sample, the result of this multiplication is $1.60 \times 10^{5} \mathrm{~mm} \mathrm{Hg} \cdot \mathrm{mL}$. The pressure exerted by the sample changes to a new value, which happens to be 750 mm Hg . What volume will the sample occupy at this pressure, assuming that temperature remains constant?

