Introduction:

The diffusion rates (velocities) of HCl and NH_3 gases will be compared. Hydrogen chloride fumes will come from hydrochloric acid and ammonia fumes will come from aqueous ammonia. Both will be simultaneously introduced into opposite ends of a glass tube. When the gases meet, they will form a white precipitate, NH_4Cl , which will form a ring in the tube.

According to the ______ theory, gas molecules are in constant motion, hitting each other and the sides of their container with perfectly ______ collisions. The temperature of a gas is a measure of the average ______ energy of the molecules. The equation for calculating this energy is: $KE = \frac{1}{2} mv^2$

If two gases are at the same temperature, the molecules have the same average kinetic energy. This makes KE a (constant, variable). This means that m and v² are ______ proportional. Heavier molecules move (slower, faster) than light molecules at the same temperature. Mathematically, the relationship can be stated as:

$$m_{1}v_{1}^{2} = m_{2}v_{2}^{2}$$
 which equals $\frac{v_{1}^{2}}{v_{2}^{2}} = \frac{m_{2}}{m_{1}}$ which equals $\left|\frac{v_{1}}{v_{2}} = \sqrt{\frac{m_{2}}{m_{1}}}\right|$

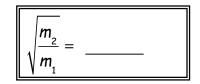
The last equation is known as Graham's Law of Diffusion.

Procedure:

- 1. A drop of concentrated hydrochloric acid (a source of HCl fumes) was placed on a cotton swab. A drop of concentrated aqueous ammonia was placed on another cotton swab.
- 2. The swabs were simultaneously inserted into opposite ends of a glass tube.
- 3. The glass tube was left undisturbed for two minutes.
- 4. After two minutes, a white ring was located and the center of the ring was marked.
- 5. The distance from each end of the tube to the mark was measured.

HCl: d₁ = _____ NH₃: d₂ = _____

6. Calculate the ratio d1/d2 = _____ This is also the ratio of the velocities of the molecules, v_1/v_2 .


<u><u>v</u>₁ =</u>
<i>v</i> ₂

7. Calculate the molar masses of the molecules:

HCI: $m_1 =$ _____

NH ₃ : m ₂	2 =	
----------------------------------	-----	--

8. Calculate the ratio:

9. Within bounds of experimental error, does $\frac{v_1}{2}$

$$\frac{1}{2} = \sqrt{\frac{m_2}{m_1}}$$
 ? _____

CHEMISTRY: A Study of Matter
© 2004, GPB
9.21