\qquad Hypothesis, Molar Volume

1. A) John \qquad was the first to form a hypothesis about partial of combined gases. After experimenting with gases, he concluded that each gas exerts the same pressure it would if it \qquad were present at the same temperature. If a gas is collected over water, the pressure in the container actually includes the sum of the vapor
\qquad of the gas and the \qquad vapor pressure. Consequently, we must \qquad the water vapor pressure from the total pressure to obtain the pressure of the \qquad alone.
B) A quantity of gas is collected over water at $20 .{ }^{\circ} \mathrm{C}$. The manometer indicated a pressure of 34.6 kPa . What would be the pressure of the dry gas?
C) Determine the total pressure of a gas mixture that contains oxygen, nitrogen and helium if the partial pressures of the gases are: oxygen $=150 \mathrm{~mm}$ Hg , nitrogen $=350 \mathrm{~mm} \mathrm{Hg}$, and helium $=210 \mathrm{~mm} \mathrm{Hg}$.
2. A) Avogadro's law states that equal volumes of different gases, at the same
\qquad and \qquad contain the same \qquad of
\qquad
B) According to Avogadro's law, how will the number of molecules in 2 liters of hydrogen gas compare with the number of molecules in 2 liters of oxygen gas at the same temperature and pressure? \qquad
C) Why is 22.4 liters called the molar volume of a gas?
D) In the following equation, what volume of hydrogen will produce 0.25 mole of NH_{3} at standard conditions of temperature and pressure?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

E) When magnesium burns in the presence of oxygen, magnesium oxide is formed. How many moles of magnesium were burned if at STP, the magnesium was ignited in a 0.50 L container of oxygen gas?

