The following activity was performed in a classroom lab:

- The plunger of a syringe, like the one used in the Boyle's Law Lab, was pulled out so that 5.0 cm<sup>3</sup> of air was confined.
- The syringe was then tightly capped so that the number of molecules of air confined could not change.
- Around the classroom, water baths at various temperatures were set up.
- The capped syringe containing 5.0 cm<sup>3</sup> of air was clamped into place in one of the water baths so that the capped bottom of the syringe pressed against the bottom of the beaker containing the water bath.
- A thermometer was placed in the water bath beside the capped syringe.
- Five minutes were allowed to pass so that the air in the syringe would equal the temperature of the water bath.
- The temperature of the water bath, and consequently the air inside the syringe, was recorded as well as the volume of trapped air.
- The process was repeated using the various water baths set up around the laboratory.
- Complete the chart below using the provided data.
- Graphing:
  - Make a graph of temperature <u>in degrees Celsius</u> vs. volume on the graph paper provided.
  - > Using a dotted line, extend the best-fit line to determine what temperature is required to theoretically reduce the volume of air to  $0 \text{ cm}^3$ .

| Temperature<br>(°C) | Volume<br>( cm <sup>3</sup> ) | Temperature<br>(K) | V/T<br>( cm³/°C ) | V/T<br>( cm <sup>3</sup> /K ) |
|---------------------|-------------------------------|--------------------|-------------------|-------------------------------|
| 0.0°C               | 4.6                           |                    |                   |                               |
| 20.0°C              | 5.0                           |                    |                   |                               |
| 40.0°C              | 5.3                           |                    |                   |                               |
| 80.0°C              | 6.0                           |                    |                   |                               |
| 100.0°C             | 6.3                           |                    |                   |                               |

## Charles's Law



Conclusions:

- 1. When a best-fit line is extended BEYOND plotted points, this is called EXTRAPOLATION. According to your graph, at what temperature would the volume of your gas equal 0 cm<sup>3</sup>?
- 2. As the temperature of a gas increases, its volume (increases, decreases). This means that the volume of a gas is (inversely, directly) proportional to its temperature when the \_\_\_\_\_ is held constant.
- 3. The law describing the relationship between volume and temperature of a gas is called \_\_\_\_\_\_ law (look at the title of the lab). Mathematically, it can be stated V/T = k. Look at the last two columns of your data table. Which temperature scale must be used for this law?\_\_\_\_\_
- 4. Look at your graph. At 20°C the volume of your gas would be \_\_\_\_\_cm<sup>3</sup>. At 40°C the volume would be \_\_\_\_\_cm<sup>3</sup>. The temperature has doubled. Has the volume doubled?\_\_\_\_\_ Explain this apparent contradiction to the law: