\qquad

The following activity was performed in a classroom lab:

- The plunger of a syringe, like the one used in the Boyle's Law Lab, was pulled out so that $5.0 \mathrm{~cm}^{3}$ of air was confined.
- The syringe was then tightly capped so that the number of molecules of air confined could not change.
- Around the classroom, water baths at various temperatures were set up.
- The capped syringe containing $5.0 \mathrm{~cm}^{3}$ of air was clamped into place in one of the water baths so that the capped bottom of the syringe pressed against the bottom of the beaker containing the water bath.
- A thermometer was placed in the water bath beside the capped syringe.
- Five minutes were allowed to pass so that the air in the syringe would equal the temperature of the water bath.
- The temperature of the water bath, and consequently the air inside the syringe, was recorded as well as the volume of trapped air.
- The process was repeated using the various water baths set up around the laboratory.
- Complete the chart below using the provided data.
- Graphing:
> Make a graph of temperature in degrees Celsius vs. volume on the graph paper provided.
> Using a dotted line, extend the best-fit line to determine what temperature is required to theoretically reduce the volume of air to $0 \mathrm{~cm}^{3}$.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Volume $\left(\mathrm{cm}^{3}\right)$	Temperature (K)	V / T $\left(\mathrm{cm}^{3} /{ }^{\circ} \mathrm{C}\right)$	V / T $\left(\mathrm{cm}^{3} / \mathrm{K}\right)$
$0.0^{\circ} \mathrm{C}$	4.6			
$20.0^{\circ} \mathrm{C}$	5.0			
$40.0^{\circ} \mathrm{C}$	5.3			
$80.0^{\circ} \mathrm{C}$	6.0			
$100.0^{\circ} \mathrm{C}$	6.3			

Charles's Law

Conclusions:

1. When a best-fit line is extended BEYOND plotted points, this is called EXTRAPOLATION. According to your graph, at what temperature would the volume of your gas equal $0 \mathrm{~cm}^{3}$?
2. As the temperature of a gas increases, its volume (increases, decreases). This means that the volume of a gas is (inversely, directly) proportional to its temperature when the \qquad is held constant.
3. The law describing the relationship between volume and temperature of a gas is called \qquad law (look at the title of the lab). Mathematically, it can be stated $\mathrm{V} / \mathrm{T}=\mathrm{k}$. Look at the last two columns of your data table. Which temperature scale must be used for this law? \qquad
4. Look at your graph. At $20^{\circ} \mathrm{C}$ the volume of your gas would be \qquad cm^{3}. At $40^{\circ} \mathrm{C}$ the volume would be \qquad cm^{3}. The temperature has doubled. Has the volume doubled? \qquad Explain this apparent contradiction to the law:
