INMOTION $2>$
gpb.org/physics-motion

Main Ideas, Key Points, Questions:

After watching the video segment, write down key points, main ideas, and big questions.

Objective(s):

- Recognize how Newton's three laws are applied to everyday scenarios, with regards to inertia, net force, and forces always occurring in pairs.
- Use Newton's second law to make calculations involving net force, mass, and acceleration.

Notes:

 drawings to take notes.
Summary:

After watching the video segment, write at least three sentences explaining what you learned. You may ask yourself: "If I was going to explain this to someone else, what would I say?"

Answer the following.

1. When an object experiences an unbalanced force, how must it be moving?
2. If an object is being pulled by two forces, one $4 \mathbf{N}$ to the left and the other $\mathbf{2 N}$ to the right, what is the net force acting on the object?
\qquad
\qquad
3. Define Newton's first law in your own words.
\qquad
\qquad
4. What is the common name for Newton's first law?
5. What physical quantity that can be measured relates directly to inertia?
\qquad
6. If two objects experience the same net force, but they have different masses, which object will accelerate at a greater rate — the lighter or heavier object?
\qquad
\qquad

Answer the following.
7. If two different net forces are applied to the same object at different times, which one will cause the object to accelerate at a greater rate - the larger or smaller net force?
\qquad
\qquad
8. What are the two types of motion an object can experience when acted upon by balanced forces?
\qquad
\qquad
9. What is the equation for Newton's second law?
10. Define Newton's third law in your own words, and give an example.
11. Explain the action-reaction pair involved when a person walks down a sidewalk.

