gpb.org/physics-motion

Scientific Notation \& Unit Conversions

In today's activity, you will measure a variety of classroom items and convert the measurements into equivalent units.

Materials:

- classroom items
- ruler/meter stick
- triple beam balance

Part l:

Find the length of each of the following items in centimeters (measure to the closest tenth of a cm).

Item	Length (cm)
Pencil	
Notebook	
Desk Height	
Classroom Height	
Length of a Classroom Wall	

Convert the length of each of the items above from centimeters into inches ($\mathbf{1} \mathrm{in}=\mathbf{2 . 5 4} \mathbf{~ c m}$).

Pencil:

Notebook:
Length of a Classroom Wall:

Desk Height:

Using the inches ruler, confirm your conversions (to the closest eighth of an inch).

Item	Length (in)
Pencil	
Notebook	
Desk Height	
Classroom Height	
Length of a Classroom Wall	

Questions to consider:

1. Were your conversions correct? If not, what are some possible reasons why?
2. Which set of units was easiest to use when making measurements, especially for values that were not whole inches or centimeters?
\qquad
\qquad

Part II:

Find the mass of each of the following items in grams (measure to the closest tenth of a gram).

Item	Mass (g)
Pencil	
Notebook	
Ruler	
Paperclip	
Calculator	

Convert the mass of each of the above items from grams into kilograms ($1 \mathbf{k g}=1,000 \mathrm{~g}$).
Pencil:
Paperclip:

Notebook:
Calculator:

Ruler:

Scientific Notation \& Unit Conversions

Questions to consider:

1. The SI unit for mass is the kilogram. Why do you think the kilogram is a better unit for mass than the gram?
\qquad
\qquad
