REFLECTION:

I. Label the diagram: focal point (F)

- II. Matching: Answers may be used more than once.
- _____ 1. image in which rays of light only appear to pass through image point
- a. concave
- 2. mirror that can reduce or enlarge image
- b. convex

- ____ 3. mirror that only reduces
- 4. mirror in which image is always same size as object
- c. plane
- _____ 5. type of image which is always inverted
- d. all mirrors

- ____ 6. diverging mirror
- _____7. parallel incident light rays are reflected in different directions
- e. convex & plane

_____8. spherical mirror

- f. concave & convex
- ____9. image which can be projected on a screen
- g. diffuse
- ____ 10. type of mirror which forms only virtual images
- h. real
- ____ 11. type of image which is always erect ____ 12. type of image formed by plane mirrors

____ 13. most versatile type of mirror

i. virtual

____ 14. security mirrors in stores

Draw ray diagrams to locate images in these mirrors:

© 2004, GPB

$$\frac{1}{d_i} + \frac{1}{d_o} = \frac{1}{f} \qquad \frac{h_i}{h_o} = \frac{-d_i}{d_o}$$

A concave mirror has a focal length of 25 cm. If an object is placed 62 cm from the mirror, where will the image be found?

If the object is 5.4 cm high, how tall will the image be? What does the sign of this answer tell you?

REFRACTION:

Draw ray diagrams to locate images with these lenses:

