<u>Part A</u>

No. of Resistors in Series Circuit	Brightness of Bulb(s)	Total I (amps)
1		
2		
3		

What happened when one bulb was unscrewed?

Conclusion:

As more resistors are added to a parallel circuit, the total current (increases, decreases), so total resistance (increases, decreases).

Position	Current, I	Voltage, V	Resistance, R=V/I
total			
R ₁			
R ₂			

Conclusions:

- 1. Within bounds of experimental error, the current in different parts of the parallel circuit is (the same, different).
- 2. Within bounds of experimental error, the voltage drops across each resistor in this parallel circuit (is the same as, adds up to) the total voltage supplied by the battery.
- 3. Within bounds of experimental error, the total resistance of the circuit is the (same as, the sum of, lower than) the resistance of each bulb.