$\qquad$

Why does a bowling ball and a marble fall at the same rate?

| Weight ( $F_{w}$ ) <br> Force $\qquad$ acceleration | Inertia_Mass acceleration |
| :---: | :---: |
| $\qquad$ Fw causes $\qquad$ acceleration | $\qquad$ mass means $\qquad$ acceleration |
| $\qquad$ Fw causes $\qquad$ acceleration | $\qquad$ mass means $\qquad$ acceleration |

The effects of $\qquad$ and $\qquad$ on acceleration $\qquad$ each other out. Using math:
$1.0 \mathrm{~kg}=$ $\qquad$ $N$

$$
10 \mathrm{~kg}=
$$

$\qquad$ N
$a=$ ?
$a=$ ?

This number, $\qquad$ is called acceleration due to $\qquad$ .

On the moon, the masses of heavy and light objects would be the $\qquad$ but their weights would be $\qquad$ . The ratios of weight to mass would be
$\qquad$ to each other, but $\qquad$ than on earth.

## Air resistance:

- is
- depends on $\qquad$ and $\qquad$


## In a vacuum



$$
\eta b=\frac{F_{w}}{m}=
$$


$\qquad$
Draw the diagram for when the two forces are equal.


When $F_{\text {air }}=F_{w}$ :
-
-
-

Physics Challenge:
If two men of different weights have the same size parachutes and jump from a plane together, who will reach the ground first?
a) the heavier
b) the lighter
c) hit at the same time

A 57 kg skydiver has a weight of 560 N . At one point the air resistance on her body is 130 N .
a) What is the net force acting on the skydiver?
b) What is the skydiver's acceleration?

To solve problems involving two forces, draw diagrams and use these equations:
$\mathrm{F}_{\text {net }}=$
$\mathrm{F}_{\text {net }}=$
Combine equations to get,

After the skydiver, weighing 560 N , opens his parachute, the force of air resistance becomes $\qquad$ N.
a. What does his acceleration become?
b. In what direction is the acceleration?

