Name _____

An objec	:t will	in the direction	on of
		exerted on it.	
Conclusions from experi "a " α "F _{net} " and "a " are			
"a " α "m" and "a" are			
Newton's 2 nd Law:			
		exerted on a object, the o	•
		of the	
•	is directly	proportional to	and
propo	rtional to mas	55.	
equation for the law:			
F_{net} and a are in the sam	ie	(Show this with arro	ows: F _{net} = m a)
Insert units for "m" and	l"a" F _{net}	x=x	
1 N = force requi	red to acceler	rate a mass of 1 1	
In fundamental u	nits, N =		
Problem Set #1: 1.			

2.

Note Taking Guide - Episode 402

Name _____

2.

3.

A bowling ball weighs 48 N. With what net force must it be pushed to accelerate it at 3.0 m/s^2 ?

During a throw, a pitcher exerts a force of 19 N on a ball weighing _____ N.

- a) What is the ball's acceleration?
- b) The ball moves _____ m before the pitcher releases it. With what speed does it leave the pitcher's hand?

Show What You	Know:			
1	2	3	4	5

PHYSICSFundamentals © 2004, GPB 4-03