\qquad

An object will \qquad in the direction of the net \qquad exerted on it.

Conclusions from experiment:
"a" α
"F net" and "a " are \qquad .
"a" α \qquad
" m " and " a " are \qquad .

Newton's $2^{\text {nd }}$ Law:

- When a \qquad is exerted on a object, the object
\qquad in the \qquad of the \qquad .
\bullet \qquad is directly proportional to \qquad and
\qquad proportional to mass.
equation for the law:

$F_{\text {net }}$ and a are in the same \qquad . (Show this with arrows: $\left.F_{\text {net }}=m a\right)$

Insert units for " m " and " a "
$\mathrm{F}_{\text {net }}=$ \qquad x
$1 \mathrm{~N}=$ force required to accelerate a mass of 1 \qquad 1

In fundamental units, $N=$ \qquad
Problem Set \#1:
1.
2.
3.
\qquad

How are weight and mass related?

$$
F_{w}=m \times \ldots m / s^{2} \quad m=\frac{F_{w}}{\ldots / s^{2}}
$$

Problem Set \#2:
1.
2.
3.

A bowling ball weighs 48 N . With what net force must it be pushed to accelerate it at $3.0 \mathrm{~m} / \mathrm{s}^{2}$?

During a throw, a pitcher exerts a force of 19 N on a ball weighing \qquad N.
a) What is the ball's acceleration?
b) The ball moves \qquad m before the pitcher releases it. With what speed does it leave the pitcher's hand?

Show What You Know:

1. \qquad 2. \qquad 3. \qquad 4. \qquad 5. \qquad
