1. Air resistance is a $\qquad$ acting on a moving object. If the object is falling, air resistance acts (upward, downward).
2. As a falling object gains speed, the force of air resistance (increases, decreases) until $\mathrm{F}_{\text {air }}=$ the $\qquad$ of the object.
When this happens, the net, external force acting on the object equals
$\qquad$ and the object no longer $\qquad$ . We say that the object has reached $\qquad$
$\qquad$ .
Now the object's motion will be $\qquad$ until it hits the ground.
3. An object weighing 10 N is in free fall. The net force acting on the object $=$ $\qquad$ . The object accelerates at $\qquad$ $\mathrm{m} / \mathrm{s}^{2}$. When the object encounters 4 N of air resistance, the net force will be
$\qquad$ . Now the object's acceleration will be (greater than, less than, equal to) $9.80 \mathrm{~m} / \mathrm{s}^{2}$.

When the object encounters 10 N of air resistance, the net force will be
$\qquad$ . Now the object's acceleration will be $\qquad$ .
4. If Galileo had dropped a rock and a feather together off the tower, the
$\qquad$ would have reached the ground first. Use the idea of "terminal velocity" to explain why.

## Problems on Back -

$\qquad$

## Problems Involving Two Forces Acting on an Object:

1. A box with a weight of 22 N falls through the air with a wind resistance of 14 N .
a. Draw a diagram showing both forces acting on the box.
b. What is the net force acting on the box?
c. Calculate the mass of the box.
d. Use Newton's $2^{\text {nd }}$ Law to calculate the acceleration of the box.
2. A bucket of water weighing 110 N is being lifted by person pulling upward on a rope with a force of 130 N .
a. Draw a diagram of the two forces acting on the bucket.
b. What is the net force on the bucket?
c. Calculate the mass of the bucket.
d. Use Newton's $2^{\text {nd }}$ Law to calculate the acceleration of the bucket.
