- 1. Air resistance is a ______ acting on a moving object. If the object is falling, air resistance acts (upward, downward).
- 2. As a falling object gains speed, the force of air resistance (increases, decreases) until F_{air} = the ______ of the object. When this happens, the net, external force acting on the object equals ______ and the object no longer ______. We say that the object has reached ______. Now the object's motion will be ______ until it hits the ground.
- An object weighing 10 N is in *free fall*. The net force acting on the object = ______. The object accelerates at ______m/s². When the object encounters 4 N of air resistance, the net force will be ______. Now the object's acceleration will be (greater than, less than, equal to) 9.80 m/s².

When the object encounters 10 N of air resistance, the net force will be _____. Now the object's acceleration will be _____.

4. If Galileo had dropped a rock and a feather together off the tower, the ______ would have reached the ground first. Use the idea of "terminal velocity" to explain why.

Problems on Back -

Problems Involving Two Forces Acting on an Object:

- 1. A box with a weight of 22 N falls through the air with a wind resistance of 14 N.
 - a. Draw a diagram showing both forces acting on the box.
 - b. What is the net force acting on the box?
 - c. Calculate the mass of the box.
 - d. Use Newton's 2nd Law to calculate the acceleration of the box.
- 2. A bucket of water weighing 110 N is being lifted by person pulling upward on a rope with a force of 130 N.
 - a. Draw a diagram of the two forces acting on the bucket.
 - b. What is the net force on the bucket?
 - c. Calculate the mass of the bucket.
 - d. Use Newton's 2nd Law to calculate the acceleration of the bucket.