gpb.org/physics-motion

Unit 6L
Spherical Mirrors
Practice Problems

Work each of the following problems. SHOW ALL WORK.

1. An object is 4.5 cm from a concave mirror, with its base on the principal axis. The focal point of the mirror is 2.0 cm .
a. Use a ray diagram to show where the image is. Is the image real or virtual, inverted or right-side-up, larger or smaller than the object?
b. Calculate the location of the image.
c. Determine the magnification of the image.
2. An object is 4.0 cm from a concave mirror, with its base on the principal axis. The focal point of the mirror is 3.0 cm .
a. Use a ray diagram to show where the image is. Is the image real or virtual, inverted or right-side-up, larger or smaller than the object?
b. Calculate the distance to the image.
c. Determine the magnification of the image.
gpb.org/physics-motion

Work each of the following problems. SHOW ALL WORK.
3. A virtual image is 5.0 cm from a concave mirror, with its base on the principal axis. The focal point of the mirror is 5.0 cm .
a. Calculate the distance to the object.
b. Determine the magnification of the image.
c. Use a ray diagram to show where the image is. Is the image inverted or right-side-up, larger or smaller than the object?
4. An image produced by an object is virtual and 1.8 cm from a convex mirror. The focal point of the mirror is 3.0 cm .
a. Calculate the distance to the object.
b. Determine the magnification of the image.
c. Use a ray diagram to show where the object is. Is the image inverted or right-side-up, larger or smaller than the object?

Unit 6L
Spherical Mirrors
Practice Problems

Work each of the following problems. SHOW ALL WORK.
5. An object is 1.5 cm from a convex mirror, with its base on the principal axis. The focal point of the mirror is 3.0 cm .
a. Use a ray diagram to show where the image is. Is the image real or virtual, inverted or right-side-up, larger or smaller than the object?
b. Calculate the location of the image.
c. Determine how magnified the image is.

